39. Synthesis of D-erythro- and D-threo-Sphingosine Derivatives from L-Serine

by Peter **Herold')**

Ciba-Geigy *AG.* Zentrale Forschungslaboratorien, CH-4002 Basel

(18.XI.87)

The protected serine aldehyde **10** was converted to the crystalline N-Boc-protected sphingosines **69** by a three-step reaction sequence. Compound **10** was transformed with high diastereoselectivity (95 %) either to the eryrhro- or threo-alkynols, **17** and **18,** respectively. The eryfhro-isomer **17** is formed by the addition to **10** of lithium pentadecyne **16** in THF/HMPT at -78°, whereas the corresponding *threo*-isomer **18** is produced in the presence of ZnBr, in Et,O. Deprotection of the acetal moiety afforded 1,3-diols **19** and **20.** These diols were selectively reduced with Red-A1 to the (E)-sphingosines **6** and **8, or** the (Z)-isomers **7** and **9** by partial hydrogenation over Lindlar's catalyst. Cleavage of the N-Boc group and further transformation to ceramides were readily achieved as demonstrated by the conversion of 6 to N-octadecanoyl-D-erythro-sphingosine 5.

Introduction. - Glycosphingolipids are ubiquitious constituents of cell membranes, where they are assumed to participate in various processes based on recognition phenomena [l]. The hydrophilic carbohydrate moiety of the glycosphingolipids varies greatly among the different classes of these substances. Conversely, the lipophilic portion is derived from a common long-chain amino alcohol, sphingosine **1** *(Scheme* I) 111. The hydrophilic moiety, located on the external surface of the membrane, determines the specificity of interactions, whereas the lipophilic portion, anchored in the outer-leaflet,

¹) Present address: Ciba-Geigy Corporation, Pharmaceuticals Division, Chemistry Research, Summit, NJ 07901, **USA.**

contributes primarily to the structural rigidity of the membrane. To investigate the biological role of glycosphingolipids, syntheses of these compounds have received increasing attention. Efficient syntheses of enantiomerically pure sphingosine **1,** the diastereoisomers **2-4,** having the unnatural configuration, and of the corresponding, structurally related ceramides such as *5* have been reported either starting from carbohydrates [2] and L-serine **[3],** respectively, or by using an enantioselective approach **[4]** based on the *Sharpless* asymmetric-epoxidation methodology. However, a versatile enantio- and diastereospecific route, leading to all four diastereoisomers **1-4,** has not been reported. Herein, we describe a highly efficient three-step synthesis of crystalline and stable²) N-Boc-protected sphingosines **6-9** using the protected serine aldehyde **10** [5] as the common intermediate.

Results. - The protected, configurationally stable serine aldehyde **10** is a potentially useful chiral building block. During the course of our investigations on the synthetic applications of **10,** we discovered that its reactions with metallated ethynyltrimethylsilane (M = H; **11)** produce either the erythro- or the threo-alkynol, **12** or **13,** respectively, depending on the reaction conditions employed (Table). Considerable erythro-selectivity $(\rightarrow 12, ds 89\%)$ was observed using lithiated 11 (M = Li) in THF at $-78°$ *(Entry 5)*. The addition of cation-complexing agents resulted in a marked increase of *erythro*-selectivity (Entries *I,* 2, and *4).* HMPT was the most effective agent, producing **12** with **95%** diastereoselectivity (ds) (Entry *1) [6].* Transmetallation of organometallics with ClTiis usually the method **of** choice for enhancing Cram -selectivity in carbonyl-addition reactions [7]. However, surprisingly, addition of Ti-compound 11 $(M = Ti(i-PrO)$]

') **Isolated vield.**

*) **The free amine bases 14 are prone to air-oxidation and are difficult to handle.**

to **10** proceeded only with low diastereoselectivity (*Entry 7*), whereas remarkably high erythro-selectivity was observed in the reaction of the corresponding Zr-derivative **11** $(M = Zr(BuO))$ [8]. On the other hand, high *threo*-selectivity was observed on addition of **10** to lithiated **11** $(M = Li)$ in the presence of anhydrous ZnBr, with Et,O as solvent (*Entry 10*) [9]. As shown, both the solvent and the nature of the organometallic intermediate **11** exhibited a marked influence on diastereoselectivity (Entries 8 and 9). The highest *threo*-selectivity (95%) was achieved in the reaction of 10 with the Cu-derivative **11** $(M = Cu)$ *(Entry 11)* [7d] [10]. The experimental results are best explained by assuming a transition state according to the *Cornforth* model [11] for *erythro*-selective reactions, *i.e.* the α -amino moiety and the C=O function are oriented in an antiperiplanar manner. On the other hand, predominant formation of threo-adduct **13** may be explained by a chelation-controlled mechanism [9] [101.

The enantiomeric purity of **12** and **13** was determined on the corresponding Mosherderivatives [**121.** 'H-NMR analysis of these compounds clearly revealed that all addition reactions of **11** with serine aldehyde **10** had occurred with no detectable racemization. The relative configuration of $C(2)$ and $C(3)$ was established after transformation of ynols **12** and **13** to the acetonides **14** and **15,** respectively *(Scheme* 2). **As** expected, the crucial coupling constant $J(4,5)$ was significantly higher (10 Hz) for the *erythro*-diastereoisomer **14** than for its threo-counterpart **15** (1 **Hz).** This finding is consistent with a trans-diaxial and an axial-equatorial relationship of $H-C(4)$ and $H-C(5)$, respectively.

Based on the above results, the syntheses of the title compounds *69* were investigated (Scheme *3).* Diastereoselective addition of 1-pentadecynyllithium **(16)** to **10** afforded the desired alkynols 17 and 18. As expected, high erythro-selectivity $(\rightarrow 17, ds 95\%)$ was observed in the reaction of 10 with 16 in THF/HMPT at -78° , whereas predominant $ZnBr$, with Et₂O as solvent. Both adducts were formed without racemization⁴). Treat-

a) **NH₄F/Bu₄NHSO₄/CH₂Cl₂/H₂O, r.t.** b) *H₂/Lindlar*/AcOEt, r.t.

c) Amherlyst **IS/CH,OH,** r.t. d) **2,2-Dimethoxypropane/PPTS/CHzC12,** r.t.

³) Determined by ¹H-NMR.
⁴) Determined *via* the corres

^{4,} Determined *via* **the** corresponding *Mosher* **esters** [I21

a) 1-Pentadecynyllithium (16)/THF, -78°. b) $16/\text{ZnBr}_2/\text{Et}_2\text{O}$, -78° \rightarrow r.t. c) Amberlyst I5/CH₃OH, r.t. d) Red-Al/Et₂O, $0^\circ \rightarrow r.t.$ e) H₂/Lindlar/AcOEt, r.t.

ment of **17** and **18** with *Amberlyst 15* in MeOH at r.t. resulted in selective cieavage of the acetal moiety, leading to 1,3-diols **19** and **20,** respectively, which were finally converted to the crystalline, enantiomerically pure N-Boc-sphingosines *6-9,* respectively, by selective reduction of the C=C bond with Red-Al in Et_rO [13] (\rightarrow 6 and 8) and by partial hydrogenation over *Lindlar's* catalyst $(\rightarrow 7 \text{ and } 9)$.

The relative configuration of *6* and **8** was established by 'H-NMR analysis of their corresponding 1,3-acetals **21** $(J(4,5) = 10 \text{ Hz})$ and **22** $(J(4,5) = 1 \text{ Hz})$, respectively. Further structural proof was obtained by converting *6* and **8** to the known triacetates *23* and **24** *(Scheme 4),* respectively, whose analytical data *(cf. Exper. Part)* were identical to those described earlier [3d] [4]. As exemplified by the conversion of **6** to *5,* N-Boc-protected sphingosines are suitable precursors of ceramides. Cleavage of the carbamate moiety with 1^N HCI in dioxane and subsequent reaction of sphingosine 1 with N-succinimidyl octadecanoate in THF afforded **N-octadecanoyl-D-erythro-sphingosine** *5,* which exhibited the correct spectroscopic and analytical data [4].

Experimental Part

General. H₂O-sensitive reactions were carried out in flame-dried glassware under Ar. THF and Et₂O were distilled over Na/benzophenone just prior to use. Solns. were dried with MgSO₄ and evaporated below 50[°] in a Buchi rotary evaporator. TLC: Merck precoated silica-gel 60 F-254 plates; detection by UV, KMnO₄, or phosphomolybdic acid. Flash chromatography (FC) [14]: silica gel Merck 60 (40-63 **p),** M.p. (uncorrected): Buchi-510 apparatus. Optical rotations: Perkin-Elmer-241 polarimeter. 'H-NMR: Bruker AM-300 and AM-360 ; chemical shifts (δ) are indicated in ppm relative to TMS as internal standard; coupling constants (J) are given in Hz.

Transformations of Table and Scheme 2. tert-Bury1 *(4S.I'R)-* and *(4S,l'S)-2,2-DimefhyI-4-[l'-hydroxy-S'- (trimethylsilyl)-2'-propynyl]oxazolidine-3-carboxylute* (12 and **13,** resp.). a) BuLi *(Fluka* ; **1.6~** in hexane, 2 ml, 3.2 mmol) was added dropwise to a soln. of **(1-ethyny1)trimethylsilane** (0.49 ml, 3.54 mmol) in abs. THF (17 ml) at

a) 2,2-Dimethoxypropane/PPTS/CH₂Cl₂, r.t. b) 1. IN HCl/dioxane, 100°; 2. Ac₂O/pyridine, r.t.

c) 1. IN HCl/dioxane, 100"; 2. N-succinimidyl octadecanoate/THF, r.t.

 -78° . After stirring at -78° for 1 h, HMPT (dist. over CaH₂, 0.77 ml, 4.4 mmol) was added, followed by a soln. of **10** [5] (500 mg, 2.2 mmol) in abs. THF (2 ml). After 2 h at -78° , sat. NH₄Cl (20 ml) was added and the mixture allowed to warm to r.t. After dilution with H₂O and extraction with Et₂O, the org. layer was washed with 0.5N HCl and sat. NaCl, dried, and evaporated *in vacuo*. FC (petroleum ether/AcOEt 6:1) afforded a 20:1 mixture 12/13 (612 mg, 85%).

b) A soln. of [(ethynyl)trimethylsilyl]lithium (3.2 mmol) in THF (17 mi), prepared as described above, was added via canula to $ClZr(BuO)$ ₃ (1.3m in Et₂O, 3.4 ml, 4.4 mmol) [8] and abs. THF (5 ml) at -78° . After stirring at -78° for 30 min and at 0° for 1 h, a soln. of 10 $(500 \text{ mg}, 2.2 \text{ mmol})$ in abs. THF (2 ml) was added at -78° . The mixture was allowed to warm to r.t. overnight and worked up as described above, affording a 12:l mixture **12/13** (650 mg, 90 %).

c) Anh. ZnBr, *(Fluka,* 1.0 **g,** 4.4 mmol) was added to a soh. of **[(ethynyl)trimethylsilyl]lithium** (3.2 mmol) in abs. Et₂O (20 ml), prepared as described above, at 0°. After stirring at r.t. for 1 h, a soln. of 10 (500 mg, 2.2 mmol) in abs. Et₂O (2 ml) was added at -78° . The heterogenous mixture was allowed to warm to r.t. overnight and worked **up** as described above, affording a 11 :1 mixture **13/12** (640 mg, 89%).

d) EtMgBr (Aldrich, 3_M in Et₂O, 1.1 ml, 3.3 mmol) was added dropwise to a soln. of (ethynyl)trimethylsilane (0.49 ml, 3.54 mmol) in abs. THF (10 ml) at 0". After stirring under reflux for **1** h, the *Grignard* compound was transferred *via* canula to a soln. of CuI (*Fluka*; 920 mg, 4.83 mmol) in THF (10 ml) and Me₂S (2 ml) at -78° . Stirring was continued at -78° and at -30° for 30 min, then a soln. of **10** (500 mg, 2.2 mmol) in abs. THF (2 ml) was added at -78° . The mixture was allowed to warm to r.t. overnight and worked up as described above, affording a 20:l mixture **13/12** (620 mg, 86%). 'H-NMR **((D,)DMSO): 12:** 0.13 **(s,** (CH,),Si); 1.42 (br., CH,, t-Bu); 1.46 **(s, CH,);** 3.754.08 *(m,* 2 H-C(5), H-C(4)); 4.41-4.50 *(m,* H-C(1')); 5.61 *(d, J* = 6, OH). **13:** 0.13 **(s,** (CH,),Si); 1.40 (br., CH,, t-Bu); 1.52 **(s,** CH,); 3.754.08 *(m,* 2 H-C(5), H-C(4)); 4.64, 4.705) (2 *dd, J* = 6, 5, H-C(1')); 5.74, 5.77⁵) (2 *d*, $J = 6$, OH).

 $⁵$ Doubling of signals due to carbamate rotamers.</sup>

tert-Butyl(4 *S.1'* R)-2,2-Dimethyl-4- *(1'-hydroxy-2'-propynyl)oxazolidine-3-carboxylate* **(25). To** a soln. of **12** (3.0 g, 9.16 mmol) and tetrabutylammonium hydrogen sulfate (0.62 g, 1.83 mmol) in CH,CI, (40 ml) was added NH₄F (45% in H₂O, 20 ml). After vigorous stirring at r.t. for 1 h, the org. layer was separated, washed with H₂O and sat. NaCI, dried, and evaporated in uacuo. FC (hexane/AcOEt 3: 1) gave pure *25* (2.1 g, 90%) as a colorless oil. $[\alpha]_D^{25} = -57.5^\circ$ *(c =* 1.1, CHCl₃). ¹H-NMR ((D₆)DMSO): 1.42 (br., CH₃, *t*-Bu); 1.46 (*s*, CH₃); 3.30, 3.35⁵) (2 *s*, H-C(3')); 3.784.02 *(m,* 2 H-C(5), H-C(4)); 4.38,4.42') (2 br., H-C(1')); 5.63, 5.705) (2 d, *J* = 6.5, OH). Anal. calc. for $C_{13}H_{21}NO_4$ (255.31): C 61.16, H 8.29, N 5.49, O 25.07; found: C 61.20, H 8.21, N 5.55, O 24.94.

tert-Butyl (4S,1'S)-2,2-Dimethyl-4-(I'-hydroxy-2'-propynyl)oxazolidine-3-carboxylate (28). Following the procedure described above, **13** was converted to **28.** Crystallization ((i-Pr),O/hexane) yielded pure 28 (84%). M.p. 92.5-93.5". $[\alpha]_0^{25} = -50.8^\circ$ *(c = 1.0, CHCl₁).* ¹H-NMR ((D₆)DMSO): 1.40 (br., CH₃, *t*-Bu); 1.52 *(s, CH₃)*; 3.22, 3.40') (2 **s,** H-C(3')); 3.754.08 *(m,* 2 H-C(5), H-C(4)); 4.554.68 *(m,* H-C(1')); 5.74,5.77 (d, J = 6, OH). Anal. **calc.forC13H21N04(255.31):C61.16,H8.29,N5.49,O25.07;found:C61.12,H8.28,N5.62,O24.92.**

tert-Butyl *(4S.I'R)-2,2-Dimethyl-4-(I'-hydroxy-2'-propenyl)oxazolidine-3-cmboxylate* **(26).** Compound **25** $(6.10 \text{ g}, 23.9 \text{ mmol})$ was dissolved in AcOEt (120 ml), Lindlar's catalyst (Fluka; 3g) was added, and the mixture was shaken under 1 atm of H_2 for 30 min. The catalyst was removed by filtration through Celite and the solvent evaporated in *uacuo.* The residue was purified by bulb-to-bulb distillation, yielding **26** (5.0 g, 81 %) as a colorless oil. *[a]:* = -19.1" *(c* = 0.8, CHCI,). 'H-NMR ((D6)DMSO): 1.40 (br., CH,, t-Bu); 1.45 **(s,** CH,); 3.60-4.13 *(m,* 2 H-C(5), H-C(4), H-C(1')); 4.95-5.20 *(m,* H-C(3'), OH); 5.15 (d, *J* = 16, H-C(3')); 5.80 (ddd, *J* = 16, 10, 6, H-C(2')). Anal. calc. for C13H23N04 (257.33): C 60.68, H 9.01, N 5.44; found: C 60.40, H 9.02, **N 5.44.**

tert-Butyl *(4S,1'9)-2,2-Dimethy1-4-(1'-hydroxy-2'-propeny1)oxazo1idine-3-carboxy1ate* **(29).** Following the procedure described above, **28** was converted to **29.** Crystallization (hexane) yielded pure **29** (88%). M.p. 82-83'. $[\alpha]_D^{25} = -52.4^{\circ}$ *(c = 1.1, CHCl₃).* ¹H-NMR ((D₆)DMSO): 1.35, 1.37⁵) (2 *s*, CH₃); 1.42 (br., CH₃, *t*-Bu); 3.80–3.97 *(m, 2 H-C(5), H-C(4)); 4.35 (br., H-C(1')); 5.06-5.22 (m, 2 H-C(3'), OH); 5.82 (ddd, J = 16, 10, 6, H-C(2')).* Anal. calc. for $C_{13}H_{23}NO_4$ (257.33): C 60.68, H 9.01, N 5.44; found: C 60.79, H 9.04, N 5.66.

tert-Butyl (I *S.2R)-N-[2-Hydroxy-l-(hydroxymethyl)-3-butenyl]carbamate* **(27).** Compound **26** (500 mg, 1.94 mmol) was dissolved in MeOH (20 ml), Amberlyst *15* (Fluka; 970 mg) was added, and the heterogenous mixture was stirred at r.t. for 24 h. After filtration through Celite, the solvent was evaporated in *uacuo,* yielding a slightly yellow oil. Filtration through a short pad of silica gel, eluting with Et_2O , and bulb-to-bulb distillation afforded pure 27 (232 mg, 55%) as a colorless oil. $[\alpha]_D^{25} = +6.90^\circ$ ($c = 0.4$, CHCl₃). ¹H-NMR ((D₆)DMSO): 1.40 (s, $I-Bu$; 3.25–3.50 (m, 2 H–C(1'), H–C(1)); 3.92 (ddd, $J = 6, 5, 5, H-C(2)$; 4.43 $(t, J = 5, OH)$; 4.90 (d, $J = 5, OH$); 5.03 *(d,* J = 10, H-C(4)); 5.15 (d, *J* = 15, H-C(4)); 5.83 (ddd, J = 16, 10, 5, H-C(3)); 6.30 (d, *J* = 8, NH). Anal. calc. for $C_{10}H_{19}NO_4$ (217.27): C 55.28, H 8.82, N 6.45; found: C 55.09, H 9.00, N 6.35.

tert-Butyl *(I S,2S)-N-[2-Hydroxy-l-(hydroxymethyl)-3-butenyl]carbamate* **(30).** Following the procedure described above, conversion of **29** yielded **30** (50%) as a colorless oil. $[\alpha]_D^{25} = -23.6$ ° ($c = 0.55$, CHCl₃). ¹H-NMR $((D_6)DMSO)$: 1.36 (s, t-Bu); 3.35-3.50 *(m,* 2 H-C(1'), H-C(1')); 4.10-4.20 *(m, H-C(2))*; 4.60 (t, *J* = 5, OH); 4.80 *J* = 8, NH). Anal. calc. for C₁₀H₁₉NO₄ (217.27): C 55.28, H 8.82, N 6.45; found: C 54.94, H 9.01, N 6.35. $(d, J = 6, OH)$; 5.05 $(d, J = 10, H-C(4))$; 5.20 $(d, J = 16, H-C(4))$; 5.85 $(dd, J = 16, 10, 5, H-C(3))$; 6.05 $(d, J = 16, 10)$

tert-Butyl (4 R,5 S)- N- (2,2-Dimethyl-4-vinyl-1,3-dioxan-5-yl) carbamate (14). Pyridinium p-toluenesulfonate (212 mg, 0.84 mmol) was added to a soln. of **27** (183 mg, 0.84 mmol) and 2,2-dimethoxypropane (2 ml, 16.8 mmol) in CH₂Cl₂ (5 ml), and the mixture was stirred at r.t. overnight. Volatiles were evaporated *in vacuo*, and the residue was purified by FC (hexane/AcOEt 3:1) yielding 14(75 mg, 34.7%) as an oil, which subsequently crystallized. M.p. 70-72". 'H-NMR ((D,)DMSO): 1.29 **(s,** CH,); 1.35 (s, t-Bu); 1.41 (s, CHJ; 3.18-3.32 (m. H-C(5)); 3.52-3.67 *(m.* 10, 6, H–C(1')); 6.42, 6.78⁵ (2 d, $J = 9.5$, NH). 2 H-C(6)); 4.13 *(dd, J* = 10, 6, H-C(4)); 5.11 *(d, J* = 10, H-C(2')); 5.22 *(d, J* = 17, H-C(2')); 5.70 *(ddd, J* = 17,

tert-Butyl $(4S,5S)$ -N- $(2,2$ -Dimethyl-4-vinyl-1,3-dioxan-5-yl)carbamate (15). Following the procedure described above, conversion of **30** gave **15** (37%) as a colorless oil. ¹H-NMR ((D₆)DMSO): 1.33 (s, CH₃); 1.37 (s, t-Bu); 1.41 **(s,** CH,); 3.42-3.50 (m, H-C(5)); 3.54 (dd, J = 12,2, H-C(6)); 4.07 (dd, J = 12,2.5, H-C(6)); 4.57 (dd, $J = 9.5$, NH). $J = 5, 2, H-C(4)$; 5.10 (d, $J = 10, H-C(2')$); 5.21 (d, $J = 17, H-C(2')$); 5.72 (ddd, $J = 17, 10, 5, H-C(1')$); 6.16 (d,

Transformations of Scheme 3. tert-Butyl (4 S, 1' R)-2,2-Dimethyl-4-(I'-hydroxyhexadec-2'-ynyl) *oxazolidine-3*carboxylate (17). BuLi (Fluka; 1.6M in hexane, 79 ml, 0.126 mol) was added dropwise to a soln. of 1-pentadecyne (28.72 g, 0.138 mol) in abs. THF (750 ml) at -20° . After stirring at -20° for 2 h, HMPT (distilled over CaH₂, 37 ml, 0.20 mol) was added, followed by a soln. of **10** (24.31 g, 0.106 mol) in abs. THF (60 ml) at -78". After **1** h at -78", the mixture was allowed to warm to -20° within 2 h and then quenched by the addition of sat. NH₄Cl (1.21). After concentration in vacuo, the residue was diluted with H₂O (600 ml) and extracted with Et₂O (3 \times 500 ml). The org. layer was washed with 0.5~ HCl(2 **x** 200 ml) and sat. NaCl(2 *x* 200 ml), dried, and evaporated in *uacuo.* Filtration

through silica gel, first using petroleum ether as the solvent to recover excess 1-pentadecyne, followed by elution with petroleum ether/AcOEt 6:1 yielded a 20:1 mixture of 17/18 (32.9 g, 71%) as a colorless oil. For analysis, a sample was purified by FC (petroleum ether/AcOEt 6:1). $[\alpha]_{D}^{25} = -40.1^{\circ}$ (c = 1.0, CHCl₃). ¹H-NMR ((D₆)DMSO): 0.85 (t, J = 7.5, CH₃-C(15')); 1.11-1.50 (m, 37 H); 2.06-2.21 (m, 2 H-C(4')); 3.71-4.06 (m, 2 H-C(5), H-C(4)); 4.41–4.50 (m, H–C(1')); 5.45 (d, $J = 6.5$, OH). Anal. calc. for C₂₆H₄₇NO₄ (437.67): C 71.35, H 10.83, N 3.20, O 14.62; found: C 71.45, H 10.86, N 3.26, O 14.69.

tert-Butyl(4 *S.1'* S) -2,2-Dimethyl-4- *(I'-hydroxyhexadec-2'-ynyl)oxazolidine-3-carboxylate* (18). BuLi (Fluka ; 1.6M in hexane, 100 ml, 0.16 mol) was added dropwise to a soln. of 1-pentadecyne (36.12 g, 0.173 mol) in abs. Et₂O (900 ml) at -20° . The white suspension was stirred at -20° for 1 h, then anh. ZnBr₂ (*Fluka*; 42.0 g, 0.186 mol) was added at 0° . After 1 h at 0° and 1 h at r.t., a soln. of 10 (30.57 g, 0.133 mol) in abs. Et₂O (185 ml) was added dropwise at -78° . The mixture was allowed to warm to r.t. overnight and then quenched by the addition of sat. NH₄Cl (600) ml) at -20° . After dilution with H₂O (750 ml), the aq. layer was separated and extracted with Et₂O (2 × 500 ml). The combined Et₂O extracts were washed with sat. NaCl, dried, and evaporated *in vacuo*. Filtration through silica gel, as described above, afforded a 20:l mixture of 18/17 (48.8 g, 83.6%) as a colorless oil. **For** analysis, a sample was purified by FC (petroleum ether/AcOEt 6:1). $[a]_D^{25} = -32.4^\circ$ ($c = 1.3$, CHCl₃). ¹H-NMR ((D₆)DMSO): 0.85 (t, *J* = 7.5, CH₃-C(15')); 1.10-1.52 (m, 37 H); 2.13 (t, *J* = 6, 2 H-C(4')); 3.73-3.85 (m, H-C(4)); 3.88-4.06 (m, 2 H-C(5)); 4.56–4.70 *(m, H-C(1'))*; 5.51, 5.54⁵*(2 d, J = 5.5, OH).* Anal. calc. for C₂₆H₄₇NO₄ (437.67): C 71.35, H 10.83, N 3.20, 0 14.62; found: C 71.20, H 10.85, N 3.18, 0 14.71.

tert-Butyl *(I* S,2R)-N-[Z-Hydroxy-l- *(hydroxymethyl)-3-heptadecynylJcarbamate* (19). Compound 17 (26.37 g, 0.06 mol) was dissolved in MeOH (600 ml), Amberlyst 15 *(Fluka;* 31 g) was added, and the heterogenous mixture was stirred at r.t. for **41** h. After filtration through Celite and evaporation *in uactio,* the residue was purified by filtration through silica gel with hexane/AcOEt 1:1: 19 (17.4 g, 72.6%) was isolated as a waxy solid. M.p. 43-44°. $\lbrack \alpha \rbrack_0^{25} = -8.5^\circ$ (c = 1.0, CHCl₃). ¹H-NMR ((D₆)DMSO): 0.85 (t, *J* = 7.5, CH₃-C(16)); 1.15-1.48 (m, 31 H); 2.15 (t, *J* = 6,2 H-C(5)); 3.36-3.53 (m. 2 H-C(l'), H-C(1)); 4.154.23 (m, H-C(2)); 4.50 *(t, J* = 5, OH); 5.31 (d, *J* = 6, OH); 6.18 (d, J = 8, NH). Anal. calc. for C₂₃H₄₃NO₄ (397.60): C 69.48, H 10.90, N 3.52, O 16.10; found: C 69.44, H 11.07, N 3.78, 0 16.15.

tert-Butyl *(I* S,2S)-N-[2-Hydroxy-l- *(hydroxymethyl)-3-heptadecynylJcarbamate* **(20).** Following the procedure described above, 18 was converted to 20 (75%), which was isolated as a colorless oil. $[\alpha]_{0}^{25} = -14.0^{\circ}$ ($c = 0.5$, CHCl₃). ¹H-NMR ((D₆)DMSO): 0.85 *(t, J* = 7.5, CH₃-C(16)); 1.13-1.50 *(m,* 31 H); 2.15 *(t, J* = 6, 2 H-C(5)); 3.26-3.50(m, 2H-C(I'), H-C(I));4.254.36(m, H-C(2));4.60(t,J = 5, OH); 5.18 (d,J = 7, OH); 6.15(d, *J* = 8, NH). Anal. calc. for C₂₃H₄₃NO₄ (397.60): C 69.48, H 10.90, N 3.52, O 16.10; found: C 69.65, H 11.03, N 3.73, O 16.24.

tert-Butyl(3E,l *S,2R)-N-[2-Hydroxy-l-(hydroxymethylj-3-heptadecenyl]carbamate (6).* A soln. of 19 (5.0 g, 12.6 mmol) in abs. Et₂O (20 ml) was added dropwise to Red-Al (*Aldrich*; $3.5M$ in toluene, 17.9 ml, 62.9 mmol) and abs. Et₂O (20 ml) at 0°. The clear soln. was stirred at r.t. for 24 h, then MeOH (9 ml) was added dropwise at 0°. After dilution with Et₂O (100 ml) and addition of sat. potassium sodium tartrate (100 ml), the mixture was vigorously stirred at r.t. for 3 h. The aq. layer was separated and extracted with Et₂O (2×100 ml). The combined Et₂O extracts were washed with sat. potassium sodium tartrate and sat. NaCl, dried, and evaporated *in vacuo*. Pure 6 $(3.26 \text{ g}, 64.9\%)$ was obtained after FC (hexane/AcOEt 1:1) and crystallization (hexane). M.p. 64–65°. $[\alpha]_0^{25} = -1.4$ ° $(c = 1.1, CHCl₃)$. ¹H-NMR ((D₆)DMSO): 0.85 $(t, J = 7.5, CH₃-C(16))$; 1.12-1.42 $(m, 31 H)$; 1.75-2.0 $(m, 2)$ H-C(5)); 3.21-3.35 *(m,* H-C(1)); 3.35-3.51 (m, 2 H-C(1')); 3.83 (td, *J* = 6.5, 5, H-C(2)); 4.40 *(t. J* = 5.5, OH); 4.76 (d, *J* = 5, OH); 5.38 (dd, *J=* 15, 6.5, H-C(3)); 5.53 (dt, *J* = 15, 6.5, H-C(4)); 6.20 (d, *J* = 8.5, NH). Anal. calc. for $C_{23}H_{45}NO_4$ (399.62): C 69.13, H 11.35, N 3.51, O 16.02; found: C 69.37, H 11.48, N 3.67, 0 15.84.

tert-Butyl(3 E,I S.2 *SJ-* N-[2-Hydroxy-l- (hydroxymethyl) *-3-heptadecenylJcarbamate* **(8).** Following the procedure described above, 20 was converted to crystalline 8 (60%). M.p. 58-59°. $[\alpha]_{\text{D}}^{25} = -0.4^{\circ}$ (c = 1.0, CHCl₃). 1 H-NMR ((D₆)DMSO): 0.85(t, J = 7.5, CH₃-C(16)); 1.12-1.42(m, 31 H); 1.75-2.0(m, 2H-C(5)); 3.20-3.46(m, 2 H-C(l'), H-C(I)); 4.04-4.13 (m, H-C(2)); 4.55 *(1, J* = 5, OH); 4.62 (d, *J* = 6, OH); 5.40 (dd, *J* = 15, 5, H-C(3)); 5.55 (dt, $J = 15$, 6, H-C(4)); 5.95 (d, $J = 8.5$, NH). Anal. calc. for C₂₃H₄₅NO₄ (399.62): C 69.13, H 11.35, N 3.51,O 16.02; found: C 69.17, H 11.32, N 3.57, 0 15.96.

tert-Butyl(3 *2.1* S.2 Rj-N-[2-Hydroxy-l- *(hydroxymethy1)-3-heptadecenylJcarbamate* (7). Compound 19 (5.1 g, 12.8 mmol) was dissolved in AcOEt (50 ml), Lindlar's catalyst (Fluka; 2.5 g) was added, and the mixture was shaken under 1 atm of H_2 for 1 h. The catalyst was removed by filtration through Celite and the solvent evaporated *in vacuo.* Crystallization (hexane) of the residue afforded pure **7** (4.74 g, 92.6%). M.p. 58-59°. $[\alpha]_D^{25} = -14.9$ *(e* = 1.0. CHCI,). 'H-NMR ((D6)DMSO): 0.85 *(f, ^J*= 7.5, CH,-C(16)); 1.13-1.41 (m, 31 H); 1.85-2.10 (m, 2 H-C(5)); 3.21-3.38 (m. H-C(I)); 3.38-3.55 (m, 2 H-C(1')); 4.20 (td, *J* = 7.5,7, *5,* H-C(2)); 4.41 (t. *J* = 6, OH); 4.71 (d, $J = 5$, OH); 5.25–5.40 (m, H-C(3), H-C(4)); 6.18 (d, $J = 9$, NH). Anal. calc. for C₂₃H₄₅NO₄ (399.62): C 69.13,H 11.35,N3.51,0 16.02;found:C69.13,H 11.37,N3.54,0 16.10.

tert-Butyl(3 *Z,l S,2S)-N-[2-Hydroxy-l-(hydroxymethyl)-3-heptadecenyl]carbamate (9).* Following the procedure described above, 20 was converted to crystalline 9 (86%). M.p. 52–53°. $[\alpha]_D^{2.5} = +29.6^\circ$ (c = 0.5, CHCl₃). ¹H-NMR ((D₆)DMSO): 0.85 (t, J = 7.5, CH₃-C(16)); 1.11-1.28 (m, 31 H); 1.78-2.08 (m, 2 H-C(5)); 3.20-3.50 (m, 2 H-C(1'), H-C(1)); 4.36–4.48 (ddd, $J = 8, 5.5, 3.5, H-C(2)$); 4.53 (t, $J = 5.5$, OH); 4.63 (d, $J = 5.5$, OH); 5.24-5.41 (m, H-C(3), H-C(4)); 6.02 (d, J = 8.5, NH). Anal. calc. for C₂₃H₄₅NO₄ (399.62): C 69.13, H 11.35, N **3.51,016.02;found:C69.18,H** 11.31,N3.58,016.06.

Transformations *of* Scheme 4. tert-Butyl (4R,S **S.2'E)-** *N-[2,2-DimethyI-4-(I'-penfadecenyl)-l,3-dioxan-5* yljcarbamate **(21).** Pyridinium p-toluenesulfonate (357 mg, 1.42 mmol) was added to a **soh.** of *6* (570 mg, 1.42 mmol) and 2,2-dimethoxypropane (3.5 ml, 28.4 mmol) in CH₂Cl₂ (10 ml), and the mixture was stirred at r.t. overnight. Volatiles were evaporated *in uacuo,* and the residue was purified by FC (hexanejAcOEt 3: l), yielding **21** as a colorless oil, which crystallized upon drying. M.p. 58-60°. ¹H-NMR ((D₆)DMSO): 0.85 *(t, J = 6.5,* CH,-C(14')); 1.20-1.40 *(m.* 22 H); 1.27 **(s,** CH,); 1.35 **(s,** t-Bu); 1.38 **(s,** CH,); 1.9C-2.0 (m, 2 H-C(3')); 3.15-3.30 (m, H-C(5)); 3.48-3.65 (m, 2 H-C(6)); 4.05 *(dd,* J = 10, 7, H-C(4)); 5.25 *(dd, J* = **15,** 7, H-C(1')); 5.63 (dt, $J = 15, 7, H - C(2')$; 6.68 (d, $J = 9, NH$).

tert-Butyl *(4* **\$5 S,2'** E)- N-[2,2-Dimethyl-4- *(Z'-pentadecenyl)-l,3-dioxan-S-yl]carbamate* **(22).** Following the procedure described above, **8** was converted to 22 (42%), which was isolated as a colorless oil. 'H-NMR $((D_6)$ DMSO): 0.85 $(t, J = 6.5, CH_3-Cl(14'))$; 1.20-1.40 $(m, 22 H)$; 1.31 (s, CH_3) ; 1.38 $(s, t-H_0)$; 1.39 (s, CH_3) ; 1.90-2.0 (m. 2 H-C(3')); 3.35-3.45 (m, H-C(5)); 3.52 (dd, J = 12, 2, H-C(6)); 4.05 *(dd, J* = 12, 2, H-C(6)); 4.49 $(dd, J=5, 1, H-C(4))$; 5.30 $(dd, J=16, 5, H-C(1'))$; 5.63 $(dt, J=16, 7, H-C(2'))$; 6.12 $(d, J=9.5, NH)$.

I-0.2-N.3-O-Triacetyl-o-erythro-sphingosine **(23).** A **soh.** of *6* (400 mg, 1 mmol) in dioxane (10 ml) and **IN** HCI *(5* ml) was stirred at 100" for 30 min. After cooling to r.t., 2N NaOH (5 ml) was added and the mixture extracted with Et₂O (3×25 ml). The combined Et₂O extracts were washed with sat. NaCl, dried, and evaporated, yielding crude 1, which was acetylated with Ac₂O (0.57 ml, 6 mmol) in pyridine (2 ml) at r.t. for 2 h. Dilution with EtzO, washing with 2N HCl, sat. NaHCO, and sat. NaC1, drying, and evaporating in *uacuo* afforded crude **23,** which was recrystallized from AcOEt/hexane. Yield: 380 mg (89.3%). **M.p.** 104.5-105' ([2d]: 105-106"; *[2e]:* 101-101.5°; [4]: 101-102°). [α] $_{10}^{15}$ = -12.9° (c = 1.0, CHCl₃); ([2e]: -11.8°; [4]: -12.8°). ¹H-NMR (CDCl₃): 0.87 (t, *J* = 7, CH,-C(17)); 1.20-1.40 (m, 22 H); 1.97-2.09 (m. 2 H-C(6)); **2.00,** 2.06, 2.09 (3s, 3 COCH,); 4.03 (dd, J = **11.5,4,H-C(l));4.30(dd,J= 11.5,6,H-C(1));4.40-4.50(m,H-C(2));5.28(dd,J=** 7,6,H-C(3));5,39(dd, $J = 15, 7, H-C(4)$; 5.63 (d, $J = 9$, NH); 5.80 (dt, $J = 15, 7, H-C(5)$). Anal. calc. for C₂₄H₄₃NO₅ (425.61): C 67.73, H 10.18, N 3.29, O 18.80; found: C 67.85, H 10.36, N 3.53, O 18.76.

1 -0,2- N.3- *0-Triacetyl-D-threo-sphingosine* **(24).** Following the procedure described above, **8** was converted to **24**, which was recrystallized from pentane. Yield: 73%. M.p. 44.5-45.5" ([2d]: 43-43.5"). [α] $_{10}^{25}$ = +10.4" (c = 1.0, CHCI₃). ¹H-NMR ((D₆)DMSO): 0.87 (t, $J = 7$, CH₃-C(17)); 1.20-1.40 (m, 22 H); 1.97-2.09 (m, 2 H-C(6)); 2.00, 2.06, 2.09 (3s, 3 COCH₃); 4.02-4.13 (m, 2 H-C(1)); 4.35-4.45 (m, H-C(2)); 5.37 *(dd, J* = 15, 7, H-C(4)); 5.40 *(dd,* $J = 9, 6, H-C(3)$; 5.64 (d, $J = 9$, NH); 5.78 (dt, $J = 15, 7, H-C(5)$). Anal. calc. for C₂₄H₄₃NO₅ (425.61): C 67.73, H 10.18, N 3.29, O 18.80; found: 67, 65, H 10.18, N 3.45, O 18.75.

N-Octadecanoyl-D-erythro-sphingosine (5). A mixture of crude **1** (109 mg, 0.34 mmol), prepared from *6* as described above, and N-succinimidyl octadecanoate [4a] (124 mg, 0.32 mmol) in abs. THF (11 ml) was stirred at r.t. for 17 h. After concentration in vacuo, FC (CH₂CL₂/CH₃OH 93:7) and crystallization (EtOH) of the pure fractions (175 mg, 96.6%) yielded 5 (117 mg, 64.6%). M.p. 98.5-100° ([4a]: 97-98°). [α] $_{10}^{25} = -2.4$ ° ($c = 1.1$, CHCl₃) ([4a]: **-3.1").** H-NMR (CDCl₃): 0.88 (t, J = 7, CH₃-C(17), CH₃-C(17')); 1.10-1.45 (m, 50 H); 1.55-1.75 (m, 2 H); 2.05 $(m, 2 H-C(6))$; 2.24 $(t, J = 7.5, 2 H-C(2'))$, 2.65 $(d, w_M \approx 15, 2 OH)$; 3.71 $(dd, J = 11, 3.5, H-C(1))$; 3.85-4.0 $(m,$ NH). Anal. calc. for $C_{36}H_{71}NO_3$ (565.97): C 76.40, H 12.64, N 2.47; found: C 76.77, H 12.62, N 2.42. H-C(l), H-C(2)); 4.33 *(m,* H-C(3)); 5.53 (dd, J = 15, 6, H-C(4)); 5.78 (dt, *J* = 15, 6, H-C(5)); 6.42 (d, J = 6,

EFERENCES

- **[l]** a) **S.** Hakomori, *Scient.* Am. **1986, 254, 44;** b) N.K. Kochetkov, G.P. Smirnova, *Ado. Carbohydr. Chem. Biochem.* **1986,44.387;** c) R. R. Schmidt, *Angew. Chem.* **1986,98,213;** d) **F.** Sarmientos, G. Schwarzmann, K. Sandhoff, *Eur. J. Biochem.* **1985, 146, 59; e) S.** Hakomori, in 'Handbook of Lipid Research: Sphingolipid Biochemistry', Ed. J.N. Kanfer and S. Hakomori, Plenum Press, New York, **1983,** Vol. **3,** pp. **1-150; fJ** H. Paulsen; *Angew. Chem.* **1982,94,184; g)** *S.* Hakomori, Ann. *Rev. Biochem.* **1981,50,733.**
- **[2]** a) R. R. Schmidt, P. Zimmerman, *Tetrahedron* Lett. **1986,27,481; b)** M. Kiso, A. Nakamura, Y. Tomita, A. Hasegawa, *Carbohydr. Res.* **1986,158,101;** c) K. Koike, M. Numata, M. Sugimoto, Y. Nakahara, T. Ogawa, *ibid.* **1986,** *158,* **113;** d) M. Obayashi, M. Schlosser, *Chem. Lett.* **1985, 1715;** *e)* E.J. Reist, P.H. Christie, J. *Org. Chem.* **1970,35,4127.**
- **(31** a) R.H. Boutin, H. Rapoport, J. *Org. Chem.* **1986,51, 5320;** b) K. Mori, Y. Funaki, *Tetrahedron* **1985,41, 2379;** c) P. Tkaczuk, E. R. Thornton, J. *Org. Chem.* **1981,46,4393;** d) H. Newman, *J.* Am. Chem. *SOC.* **1973, 95,4098.**
- **[4]** a) R. Julina, T Herzig, B. Bernet, A. Vasella, *Helu. Chim. Acta* **1986, 69, 368;** b) B. Bernet, A. Vasella, *Tetrahedron Lett.* **1983,24,5491.**
- **[5]** a) P. Gamer, **S.** Ramakanth, *J. Org. Chem.* **1986,51,2609;** b) P. Gamer, *Tetrahedron* Lett. **1984,25, 5855.**
- **[6]** a) Y. Yamamoto, K. Maruyama, J. Am. *Chem.* **SOC. 1985,107, 641 1;** b) T. Sugiyama, K. Yamashita, *Agric. Biol. Chem.* **1980,44, 1983.**

1

- **[7]** a) M.T. Reetz, M. Hiillmann, J. *Chem. Sac.. Chem. Commun.* **1986,1600;** b) M.T. Reetz, in 'Organotitanium Reagents in Organic Synthesis', Springer-Verlag. Berlin, **1986;** c) M.T. Reetz, K. Kesseler, *J. Org. Chem.* **1985,50, 5436;** d) K. Mead, T. L. Macdonald, *ibid.* **1985,50,422;** e) **J.** Mulzer, A. Angermann, *Tetrahedron Lett.* **1983,24, 2843.**
- [8] B. Weidmann, Ch.D. Maycock, D. Seebach, Helu. *Chim. Acta* **1981,64, 1552.**
- **[9]** a) M. Asami, R. Kimura, *Chem. Lett.* **1985,1221;** b) M. Asami, T. Mukaiyama, *ibid.* **1983,93.**
- [lo] **F.** Sato, Y. Kobayashi, *0.* Takahashi, T. Chiba, Y. Takeda, M. Kusakabe, J. *Chem. Soc., Chem. Commun.* **1985,1636.**
- [11] **J. W. Cornforth, R. H. Cornforth, K. K. Mathew,** *J. Chem. Soc.* **1956,** 112.
- **[I21 J.** A. Dale, D. L. **Dull,** H. **S.** Mosher, J. *Org. Chem.* **1%9,34,2543.**
- [**131 S. E.** Denmark, T.K. Jones, *J. Org. Chem.* **1982,47,4595.**
- **[14]** W.C. Still, M. Kahn, A. Mitra, J. *Org. Chem.* **1978,43,2923.**